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Abstract

Azimuthal dihadron correlations of charged particles have been measured in PbPb
collisions at

√
sNN = 2.76 TeV by the CMS collaboration, using data from the 2011 LHC

heavy-ion run. The data set includes a sample of ultra-central (0–0.2% centrality)
PbPb events collected using a trigger based on total transverse energy in the hadron
forward calorimeters and the total multiplicity of pixel clusters in the silicon pixel
tracker. A total of about 1.8 million ultra-central events were recorded, correspond-
ing to an integrated luminosity of 120 µb−1. The observed correlations in ultra-central
PbPb events are expected to be particularly sensitive to initial-state fluctuations. The
single-particle anisotropy Fourier harmonics, from v2 to v6, are extracted as a function
of particle transverse momentum. At higher transverse momentum, the v2 harmonic
becomes significantly smaller than the higher-order vn (n ≥ 3). The pT-averaged
v2 and v3 are found to be equal within 2%, while higher-order vn decrease as n in-
creases. The breakdown of factorization of dihadron correlations into single-particle
azimuthal anisotropies is observed. This effect is found to be most prominent in the
ultra-central PbPb collisions, where the initial-state fluctuations play a dominant role.
A comparison of the factorization data to hydrodynamic predictions with event-by-
event fluctuating initial conditions is also presented.
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1 Introduction
The azimuthal anisotropy of emitted charged particles is an important feature of the hot, dense
medium produced in heavy-ion collisions. One of the main goals of studying the azimuthal
anisotropies is to understand the collective properties of the medium and extract its trans-
port coefficients, particularly the shear viscosity over entropy density ratio, η/s, using hy-
drodynamic models [1]. Earlier observations of strong azimuthal anisotropies in collisions of
gold nuclei at nucleon-nucleon center-of-mass energies (

√
sNN ) up to 200 GeV at the Relativistic

Heavy-Ion Collider (RHIC) indicated that a strongly coupled quark-gluon plasma is produced,
which behaves as a nearly perfect liquid with a close-to-zero η/s value [2–7]. The azimuthal
anisotropies have also been extensively measured at the Large Hadron Collider (LHC) over a
wide kinematic range in PbPb collisions at

√
sNN = 2.76 TeV [8–17].

In a non-central heavy-ion collision, the overlap region of the two colliding nuclei has a lentic-
ular shape, and the interacting nucleons in this region are known as “participants.” The “par-
ticipant plane” is defined by the beam direction and the short axis of the participating nucleon
distribution. Because of fluctuations that arise from the finite number of nucleons, the impact
parameter vector typically does not coincide with the short axis of this lenticular region. Strong
rescattering of the partons in the initial state may lead to local thermal equilibrium and the
build-up of anisotropic pressure gradients, which drive a collective anisotropic expansion. The
expansion is fastest along the largest pressure gradient, i.e., along the short axis of the lenticular
region. Therefore, the eccentricity of initial-state collision geometry results in an anisotropic az-
imuthal distribution of the final-state hadrons. In general, the anisotropy can be characterized
by the Fourier harmonic coefficient (vn) in the azimuthal angle (φ) distribution of the hadron
yield, dN/dφ ∝ 1 + 2 ∑n vn cos[n(φ − Ψn)], where Ψn is the event-by-event azimuthal angle
of the participant plane. As the participant plane is not a measurable quantity experimentally,
it is often approximated by the “event plane”, defined as the direction of maximum final-state
particle density. The second-order Fourier component (v2) is known as the “elliptic flow”, and
its event plane angle Ψ2 approximately corresponds to the short axis direction of the lenticu-
lar region. Due to event-by-event fluctuations, higher-order deformations or eccentricities of
the initial geometry can also be induced, which lead to higher-order Fourier harmonics (vn,
n ≥ 3) in the final state with respect to their corresponding event plane angles, Ψn [18–24]. For
a given initial-state eccentricity, the finite η/s value of the system tends to reduce the azimuthal
anisotropy observed for final-state particles. The higher-order Fourier harmonics are expected
to be particularly sensitive to the shear viscosity of the expanding medium.

Precise extraction of η/s from the anisotropy data is crucial for investigating the transport prop-
erties of the hot and dense medium created in heavy-ion collisions in detail [1]. This effort is,
however, complicated by large uncertainties in our understanding of the initial-state conditions
of heavy-ion collisions, especially in terms of event-by-event fluctuations. Different initial-state
models predict different values of eccentricity and its fluctuations, leading to large uncertain-
ties on the extracted η/s values. In order to better constrain the initial-state condition, it was
suggested [25] that in ultra-central heavy-ion collisions (e.g., top 1% most central collisions),
the initial collision geometry is predominantly generated by fluctuations such that various or-
ders of eccentricities predicted by different models tend to converge. Here, collision centrality
is defined as the fraction of the total inelastic PbPb cross section, with 0% denoting the most
central collisions. Therefore, studies of azimuthal anisotropy in ultra-central heavy-ion colli-
sions can help to reduce the systematic uncertainties of initial-state modeling in extracting the
η/s value of the system, although quantitative comparison to theoretical calculations is beyond
the scope of this paper.
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Furthermore, since the event plane angle, Ψn, is determined by the final-state particles, select-
ing particles from different ranges of transverse momentum (pT) may lead to different esti-
mates of event plane angles. Also due to the effect of initial-state fluctuations, it was recently
predicted by hydrodynamic models that a pT-dependence of the event plane angle will be in-
duced, which could be one of the sources responsible for the breakdown of factorization in
extracting vn harmonics from dihadron correlations [26, 27]. As mentioned already, the ultra-
central heavy-ion events are dominated by the initial-state eccentricity fluctuations. Thus, they
provide an ideal testing ground for the effect of a pT-dependent event plane angle.

This paper presents the measurement of azimuthal anisotropy harmonics, from v2 to v6, ex-
tracted using long-range (large |∆η|) dihadron correlations as a function of pT from 0.3 to
8.0 GeV/c in the top 0.2% most central PbPb collisions at a center-of-mass energy per nucleon
pair (

√
sNN ) of 2.76 TeV. Here, ∆η is the difference in pseudorapidity η =− ln[tan(θ/2)] between

the two particles, where the polar angle θ is defined relative to the beam axis. The pT-averaged
vn values for 0.3 < pT < 3.0 GeV/c are also derived up to n = 7. Factorization of the Fourier
coefficients from dihadron correlations into a product of single-particle azimuthal anisotropies
is investigated. This study of factorization is quantitatively compared to hydrodynamic pre-
dictions with different models of initial-state fluctuations and η/s values for two centrality
classes.

2 Experimental Setup
The data used in this analysis correspond to an integrated luminosity of 120 µb−1 and were
recorded with the CMS detector during the 2011 PbPb LHC running period at

√
sNN = 2.76 TeV.

A detailed description of the CMS detector can be found in Ref. [28]. The CMS uses a right-
handed coordinate system, with the origin at the nominal interaction point, the x axis pointing
to the centre of the LHC, the y axis pointing up (perpendicular to the LHC plane), and the z axis
along the anticlockwise-beam direction. The polar angle θ is measured from the positive z axis
and the azimuthal angle (φ) is measured in the x-y plane. The central feature of the apparatus is
a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within
the field volume are the silicon pixel and strip trackers, the crystal electromagnetic calorime-
ter, and the brass/scintillator hadron calorimeter. In PbPb collisions, trajectories of charged
particles with pT > 0.2 GeV/c are reconstructed in the tracker covering the pseudorapidity
region |η| < 2.5, with a track momentum resolution of about 1% at pT = 100 GeV/c. In addi-
tion, CMS has extensive forward calorimetry, in particular two steel/quartz-fiber Cherenkov
hadron forward (HF) calorimeters, which cover the pseudorapidity range 2.9 < |η| < 5.2. The
HF calorimeters are segmented into towers, each of which is a two-dimensional cell with a
granularity of 0.5 units in η and 0.349 rad in φ. The zero-degree calorimeters (ZDC) are tung-
sten/quartz Cherenkov calorimeters located at ±140 mm from the interaction point [29]. They
are designed to measure the energy of photons and spectator neutrons emitted from heavy ion
collisions. Each ZDC calorimeter has electromagnetic and hadronic sections with an active area
of ±40 mm in x and ±50 mm in y. When the LHC beam crossing angle is 0 degree, this corre-
sponds to an η acceptance that starts at η = 8.3 and is 100% by η = 8.9 for

√
sNN = 2.76 TeV.

For one neutron, the ZDCs have an energy resolution of 20%. Since each neutron interacts
independently, the resolution improves as the square root of the number of neutrons.
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3 Selections of Events and Tracks
Minimum bias PbPb events were triggered by coincident signals from both ends of the detector
in either the beam scintillator counters (BSC) at 3.23 < |η| < 4.65 or in the HF calorimeters.
Events due to noise, cosmic rays, out-of-time triggers, and beam backgrounds were suppressed
by requiring a coincidence of the minimum bias trigger with bunches colliding in the interac-
tion region. The trigger has an efficiency of (97± 3)% for hadronic inelastic PbPb collisions. In
total, about 2% of all minimum bias PbPb events were recorded.

To maximize the event sample for very central PbPb collisions, a dedicated online trigger on the
0–0.2% ultra-central events was implemented by simultaneously requiring the HF transverse
energy (ET) sum to be greater than 3260 GeV and the pixel cluster multiplicity to be greater
than 51400 (which approximately corresponds to 9500 charged particles over 5 units of pseu-
dorapidity). The selected events correspond to the 0.2% most central collisions of the total PbPb
inelastic cross section. The correlation between the HF ET sum and pixel cluster multiplicity for
minimum bias PbPb collisions at

√
sNN = 2.76 TeV is shown in Fig. 1. The dashed lines indicate

the selections used for the 0–0.2% centrality range. This fractional cross section is determined
relative to the standard 0–2.5% centrality selection in PbPb collisions at CMS by selecting on the
total energy deposited in the HF calorimeters [8]. The inefficiencies of the minimum bias trig-
ger and event selection for very peripheral events are properly accounted. In a similar way, the
0–0.02% centrality range is also determined by requiring the HF ET sum greater than 3393 GeV
and pixel cluster multiplicity greater than 53450 (a subset of 0–0.2% ultra-central events). With
this trigger, the ultra-central PbPb event sample is enhanced by a factor of about 40 compared
to the minimum bias sample. For purposes of systematic comparisons, other PbPb centrality
ranges, corresponding to 40–50%, 0–10%, 2.5–5.0%, 0–2.5% and 0–1%, are studied based on the
HF ET sum selection using the minimum bias sample. As a cross-check, the 0–1% centrality
range is also studied using combined HF ET sum and pixel cluster multiplicity, similar to the
centrality selection of 0–0.2% ultra-central events.

Centrality selections of ultra-central events are investigated in Monte Carlo (MC) simulations
using the AMPT [30] heavy-ion event generator, which provides a realistic modeling of the
initial-state fluctuations of participating nucleons. The generated particles are propagated
through the full GEANT4 [31] simulation of the CMS detector. The equivalent centrality re-
quirements on the HF ET sum and pixel cluster multiplicity are applied in order to evaluate the
selected ranges of impact parameter and number of participating nucleons, NPart, for various
centrality ranges. A summary of the mean and RMS values of NPart distributions for selected
events of each very central PbPb centrality range can be found in Table 1. As one can see, there
is only a moderate increase of average NPart value for events that are more central than 0–1%
centrality, although the RMS value still decreases significantly for more central selections.

Table 1: The mean and RMS of NPart distributions for selected events in each centrality bin in
AMPT simulations.

Centrality 〈NPart 〉 RMS
0–0.02% 406.2 3.6
0–0.2% 404.0 6.9
0–1.0% 401.1 8.3
0–2.5% 395.8 11.3

2.5–5.0% 381.3 19.5

Standard offline event selections [8] are also applied by requiring energy deposits in at least
three towers in each of the HF calorimeters, with at least 3 GeV of energy in each tower, and the
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Figure 1: HF ET sum vs. pixel cluster multiplicity for minimum bias triggered PbPb collisions
at
√

sNN = 2.76 TeV. The region in the upper right corner encompassed by the dashed lines
depicts the 0–0.2% selected centrality range.

presence of a reconstructed primary vertex containing at least two tracks. The reconstructed
primary vertex is required to be located within ±15 cm of the average interaction region along
the beam axis and within a radius of 0.02 cm in the transverse plane. These criteria further
reduce the background from single-beam interactions (e.g., beam-gas and beam-halo), cosmic
muons, and ultra peripheral collisions that lead to the electromagnetic breakup of one or both
Pb nuclei [32]. These criteria are most relevant for selecting very peripheral PbPb events but
have little effect (< 0.01%) on the events studied in this paper.

During the 2011 PbPb run, there was a probability of about 10−3 to have two collisions recorded
in a single beam crossing (pileup events). This probability is even higher for ultra-central trig-
gered events, which sample the tails of the HF ET sum and pixel cluster multiplicity distribu-
tions. If a large HF ET sum or pixel cluster multiplicity event is due to two mid-central collisions
instead of a single ultra-central collision, more spectator neutrons will be released, resulting in
a large signal in the ZDC. To select cleaner single-collision PbPb events, the correlation of en-
ergy sum signals between ZDC and HF detectors is studied. Events with large signals in both
ZDC and HF are identified as pileup events (about 0.1% of all events), and thus rejected.

The reconstruction of the primary event vertex and the trajectories of charged particles in PbPb
collisions is based on signals in the silicon pixel and strip detectors and described in detail in
Ref. [8]. From studies based on PbPb events simulated using HYDJET [33] (version 1.8), the
combined geometrical acceptance and reconstruction efficiency of the primary tracks is about
70% at pT ∼ 1 GeV/c and |η| < 1.0 for the 0–0.2% central PbPb events but drops to about 50%
for pT ∼ 0.3 GeV/c. The fraction of misidentified tracks is kept at the level of < 5% over most
of the pT (pT > 0.5 GeV/c) and η (|η| < 1.6) ranges. It increases up to about 20% for very low
pT (pT < 0.5 GeV/c) particles in the forward (|η| ≈ 2) region.
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4 Analysis procedure
Following the same procedure of dihadron correlation analysis as in Refs. [9, 34–37], the signal
and background distributions of particle pairs are first constructed. Any charged particle asso-
ciated with the primary vertex and in the range |η| < 2.4 can be used as a “trigger” particle. A
variety of bins of trigger particle transverse momentum, denoted by ptrig

T , are considered. In a
single event, there can be more than one trigger particle and their total multiplicity is denoted
by Ntrig. Within each event, every trigger particle is then paired with all of the remaining parti-
cles (again within |η| < 2.4). Just as for the trigger particles, these associated particles are also
binned in transverse momentum (passoc

T ).

The signal distribution, S(∆η, ∆φ), is the per-trigger-particle yield of pairs found in the same
event,

S(∆η, ∆φ) =
1

Ntrig

d2Nsame

d∆η d∆φ
, (1)

where Nsame is the number of such pairs within a (∆η,∆φ) bin, and ∆φ and ∆η are the differ-
ences in azimuthal angle φ and pseudorapidity η between the two particles. The background
distribution, B(∆η, ∆φ), is found using a mixed-event technique, wherein trigger particles from
one event are combined (mixed) with all of the associated particles from a different event. In the
analysis, associated particles from 10 randomly chosen events with a small zvtx range (±0.5 cm)
near the zvtx of the event with trigger particles are used. The result is given by

B(∆η, ∆φ) =
1

Ntrig

d2Nmix

d∆η d∆φ
, (2)

where Nmix denotes the number of mixed-event pairs. This background distribution represents
the expected correlation function assuming independent particle emission, but taking into ac-
count effects of the finite acceptance.

The two-dimensional (2D) differential yield of associated particles per trigger particle is given
by

1
Ntrig

d2Npair

d∆η d∆φ
= B(0, 0)× S(∆η, ∆φ)

B(∆η, ∆φ)
, (3)

where Npair is the total number of hadron pairs. The value of the background distribution at
∆η = 0 and ∆φ = 0, B(0, 0), represents the mixed-event associated yield for both particles of
the pair going in approximately the same direction and thus having full pair acceptance (with
a bin width of 0.3 in ∆η and π/16 in ∆φ). Therefore, the ratio B(0, 0)/B(∆η, ∆φ) accounts for
the pair-acceptance effects. The correlation function described in Eq. (3) is calculated in 0.5 cm
wide bins of the zvtx along the beam direction and then averaged over the range |zvtx| < 15 cm.

To extract the azimuthal anisotropy harmonics, vn, the one-dimensional (1D) azimuthal di-
hadron correlation function as a function of ∆φ, averaged over |∆η| > 2 (to avoid the short-
range correlations from jets and resonance decays), can be decomposed into a Fourier series
given by

1
Ntrig

dNpair

d∆φ
=

Nassoc

2π

{
1 +

∞

∑
n=1

2Vn∆ cos(n∆φ)

}
. (4)

Here, Vn∆ are the Fourier coefficients from dihadron correlations, and Nassoc represents the total
number of hadron pairs per trigger particle for a given |∆η| range and (ptrig

T , passoc
T ) bin.
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In Refs. [9, 35–37], a fit to the azimuthal correlation function by a Fourier series was used to
extract the Vn∆ coefficients. In this paper, a slightly different approach is applied. The Vn∆
values are directly calculated as the average value of cos(n∆φ) of all particle pairs for |∆η| > 2
(to avoid the short-range correlations from jets and resonance decays):

Vn∆ = 〈〈cos(n∆φ)〉〉S − 〈〈cos(n∆φ)〉〉B. (5)

Here, 〈〈 〉〉 denotes averaging over all particles in each event and over all the events. The sub-
scripts S and B correspond to the average over signal and background pairs. With an ideal
detector, 〈〈cos(n∆φ)〉〉S equals to Vn∆ by definition. The 〈〈cos(n∆φ)〉〉B term is subtracted in
order to remove the effects of detector non-uniformity. The advantage of the present approach
is that the extracted Fourier harmonics will not be affected by the finite bin widths of the his-
togram in ∆η and ∆φ. This is particularly important for very-high-order harmonics (Vn∆ is
extracted up to n = 7 in this analysis) that are sensitive to the finer variations of the correlation
functions.

It was thought [9, 14, 16] that, for correlations purely driven by the hydrodynamic flow, Vn∆ can
be factorized into a product of single-particle Fourier harmonics, vn(ptrig

T ), for trigger particles
and vn(passoc

T ), for associated particles:

Vn∆ = vn(ptrig
T )× vn(passoc

T ). (6)

The single-particle azimuthal anisotropy harmonics can then be extracted as a function of pT
as follows:

vn(pT) =
Vn∆(pT, pref

T )√
Vn∆(pref

T , pref
T )

, (7)

where a fixed pref
T range is chosen for the “reference particles”. However, as pointed out in

Refs. [26, 27], due to fluctuating initial-state geometry, the factorization of Vn∆ could also break
down for flow-only correlations. Direct tests of the factorization relation for Vn∆ in Eq. (6) are
carried out in this paper, as will be discussed in Section 5.3. These tests may provide new
insights into the initial-state density fluctuations of the expanding hot medium.

When calculating 〈〈cos(n∆φ)〉〉, each pair is weighted by the product of correction factors for
the two particles. These factors are the inverse of an efficiency that is a function of each parti-
cle’s pseudorapidity and transverse momentum,

εtrk(η, pT) =
A(η, pT)E(η, pT)

1− F(η, pT)
, (8)

where A(η, pT) is the geometrical acceptance, E(η, pT) is the reconstruction efficiency, and
F(η, pT) is the fraction of misidentified tracks. The effect of this weighting factor only changes
the overall scale of dihadron correlation functions, and has almost no effect on 〈〈cos(n∆φ)〉〉.
However, the misidentified tracks may have different vn values from those of correctly recon-
structed tracks. Therefore, the effects of misidentified tracks are investigated and corrected
using the same procedure as done in Ref. [8]. The vn values for the true charged tracks (vtrue

n )
can be expressed as a combination of vn for all the observed tracks (vobs

n ) and for misidentified
tracks (vmis

n ):

vtrue
n (pT) =

vobs
n (pT)− F(pT)× vmis

n (pT)

1− F(pT)
. (9)

An empirical correction for the misidentified track vn based on the simulation studies is found
to be independent of track selections or the fraction of misidentified tracks. The correction is
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given by vmis
n = f × 〈vn〉, where 〈vn〉 is the yield-weighted average over the pT range from 0.3

to 3.0 GeV/c, folding in the efficiency-corrected spectra. The estimated values of the correction
factor, f , as well as its uncertainty, are summarized in Table 2 for different vn.

Table 2: The factor, f , for estimating the vn values of misidentified tracks, as well as its uncer-
tainty, for various orders of Fourier harmonics.

n f
2 1.3± 0.1
3 1.0± 0.4
4 0.8± 0.6
5 0.8± 0.6
>6 0.8± 0.6

The systematic uncertainties due to misidentified tracks, which are most important at low pT
where the misidentified track rate is high, are reflected in the uncertainty of the f factor in
Table 2. At low pT, the systematic uncertainty from this source is 1.4% for v2 and 5–8% for v3 to
v6. By varying the z-coordinate of vertex binning in the mixed-event background, the results
of the vn values vary by at most 2–8% for v2 to v6, respectively. Systematic uncertainties due to
the tracking efficiency correction are estimated to be about 0.5%. By varying the requirements
on the ZDC sum energy used for pileup rejection, the results are stable within less than 1%.
The various sources of systematic uncertainties are added in quadrature to obtain the final
uncertainties shown as the shaded color bands for results in Section 5.

5 Results
5.1 Single-particle azimuthal anisotropy, vn

Results of azimuthal anisotropy harmonics, from v2 to v6, as a function of pT in 0–0.2% cen-
tral PbPb collisions at

√
sNN = 2.76 TeV, are shown in Fig. 2 (left). The vn values are extracted

from long-range (|∆η| > 2) dihadron correlations using Eq. (5), and by assuming factorization
in Eq. (7). The pref

T range is chosen to be 1–3 GeV/c. The error bars correspond to statisti-
cal uncertainties, while the shaded color bands indicate the systematic uncertainties. As the
collisions are extremely central, the eccentricities, εn, are mostly driven by event-by-event par-
ticipant fluctuations and are of similar sizes within a few % for all orders. Consequently, the
magnitudes of v2 and v3 are observed to be comparable (within 2% averaged over pT as will
be shown in Fig. 4), which is not the case for non-central collisions. Different vn harmonics
have very different dependencies on pT. At low pT (pT < 1 GeV/c), the v2 harmonic has the
biggest magnitude compared to other higher-order harmonics. It becomes smaller than v3 at
pT ≈ 1 GeV/c, and even smaller than v5 for pT > 3 GeV/c. This intriguing pT dependence can be
compared quantitatively to hydrodynamics calculations with fluctuating initial conditions, and
it provides important constraints on theoretical models. For a given value of pT, the magnitude
of vn for n ≥ 3 decreases monotonically with n, as will be shown later.

If a system created in an ultra-relativistic heavy-ion collision behaves according to ideal hy-
drodynamics, the Fourier harmonics, vn, are expected to follow a pT dependence that has a
power-law, pn

T, functional form in the low-pT region [38, 39]. Hence, the scaling ratio, v1/n
n /v1/2

2 ,
will be largely independent of pT, as was seen by the ATLAS collaboration for not very central
events [16]. In Fig. 2 (right), the v1/n

n /v1/2
2 ratios are shown as a function of pT for n = 3–6
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√
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= 2.76 TeV. Error bars denote the statistical uncertainties.

obtained in 0–0.2% ultra-central PbPb collisions at
√

sNN = 2.76 TeV. The obtained ratio shows
an increase as a function of pT. This trend is consistent to what was observed by the ATLAS
collaboration for very central events (e.g., 0–1% centrality) [16].

Other choices of pref
T ranges are also studied in order to examine the assumption of factorization

made for extracting vn. As an example, Fig. 3 shows the comparison of vn as a function of pT
for 1 < pref

T < 3 GeV/c and 0.5 < pref
T < 1.0 GeV/c. The vn values extracted with two choices

of pref
T ranges are consistent within statistical uncertainties for n > 2 over the entire pT range.

However, a significant discrepancy is observed for v2 at higher pT, e.g., up to about 40% for
pT ∼ 4 GeV/c, while the low pT region shows a good agreement between the two pref

T ranges.
A detailed study of factorization breakdown for Eq. (6) as well as its physical implication is
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Figure 4: Comparison of pT-averaged (0.3–3.0 GeV/c) vn as a function of n in five centrality
ranges (2.5–5.0%, 0–2.5%, 0–1%, 0–0.2% and 0–0.02%) for PbPb collisions at

√
sNN = 2.76 TeV.

The pref
T of 1–3 GeV/c is used. Error bars denote the statistical uncertainties, while the shaded

color boxes correspond to the systematic uncertainties.

presented in Section 5.3, which is in agreement with the discrepancy observed in figure 3.

The pT-averaged vn values (with pref
T of 1–3 GeV/c) weighted by the efficiency-corrected charged-

hadron yield, over the pT range from 0.3 to 3.0 GeV/c, are shown in Fig. 4 as a function of n up
to n = 7 (the v7 value as a function of pT is not presented in Fig. 2 due to limited statistical
precision). The 0–0.2% ultra-central events are compared to several other very central PbPb
centrality ranges including 2.5–5.0%, 0–2.5%, 0–1% and 0–0.02%. As mentioned earlier, results
for 0–1% centrality are compared with both the HF ET sum selection (not shown) and HF ET
sum plus pixel cluster multiplicity (NPixel) selection as a systematic check. The two methods
of centrality selection yield consistent vn results within statistical uncertainties. Therefore, only
results from HF ET sum plus pixel cluster multiplicity centrality selection are shown in Fig. 4.
Beyond the 2.5–5.0% centrality range, the vn values are still decreasing toward more central col-
lisions, especially for v2. Going from 0–0.2% to 0–0.02% centrality, vn shows almost no change,
indicating events do not become significantly more central by requiring larger HF ET sum and
pixel cluster multiplicity, especially in terms of eccentricities. This is consistent with the studies
using the AMPT model. The vn values remain finite up to n = 6 within the statistical precision
of our data. Beyond n = 6, vn becomes consistent with zero. The magnitude of v2 and v3
are very similar, while the vn become progressively smaller for n ≥ 4. This is qualitatively in
agreement with expectations from hydrodynamic calculations [38].

5.2 Correlation Functions

Dihadron correlation functions are also constructed using Eq. (3) in order to check the consis-
tency of extracting Vn∆ using Eq. (5) with the fit method to the correlation function by a Fourier
series in Eq. (4). Figure 5 (left) shows the dihadron correlation functions for 1 < ptrig

T < 3 GeV/c
and 1 < passoc

T < 3 GeV/c in 0–0.2% central PbPb collisions at
√

sNN = 2.76 TeV. As shown in
Fig. 2, the v3, v4, and v5 values become comparable or even bigger than v2 at 1 < pT < 3 GeV/c.
In Fig. 5, this can be seen in the dihadron correlation function on the away side (∆φ ∼ π), where
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Figure 5: The 2D (left) and 1D ∆φ (right) dihadron correlation functions for 1 < ptrig
T < 3 GeV/c

and 1 < passoc
T < 3 GeV/c in 0–0.2% central PbPb collisions at

√
sNN = 2.76 TeV. The broken

lines on the right panel show various orders of Vn∆ components expected from the extracted vn
values in Section 5.1, while the solid line is the sum of all Vn∆ components.

a significant local minimum (at ∆φ ∼ π along ∆η) is present. On the near side (∆φ ∼ 0) of the
correlation function, a long-range structure extending over the entire ∆η region is present. The
observed features of the correlation function are similar to what was seen previously at CMS in
other centrality ranges of PbPb collisions [9, 35], although the dip on the away side is not seen
in non-central PbPb collisions. This may indicate that the contribution of higher-order Fourier
components (e.g., v3) is more relevant for very central events.

Averaging over ∆η, the 1D ∆φ dihadron correlation function, for 1 < ptrig
T < 3 GeV/c and

1 < passoc
T < 3 GeV/c in 0–0.2% central PbPb collisions at

√
sNN = 2.76 TeV, is shown in Fig. 5

(right). The range of |∆η| < 2 is excluded from the average to avoid non-flow effects from
other source of correlations, such as jet fragmentation. The dashed curves represent different
Vn∆ components and are constructed from the vn values extracted in Section 5.1 by assuming
factorization. The solid curve is the sum of all Vn∆ components, which is in good agreement
with the measured dihadron correlation function.

5.3 Factorization breakdown and pT dependence of event plane angle

The breakdown of factorization observed in Fig. 3 could be caused by non-flow effects that
contribute to the dihadron correlation function at large ∆η, e.g., back-to-back jet correlations.
However, in hydrodynamics, it has been recently suggested that one possible source of fac-
torization breakdown is related to the initial-state eccentricity fluctuations [26, 27]. The event
plane angle, Ψn, as determined by final-state particles, could be dependent on the particle pT
event-by-event, instead of a unique angle for the entire event (which is the case for a non-
fluctuating smooth initial condition). Because of this effect, the factorization of Vn∆ extracted
from dihadron correlations could be broken, even if hydrodynamic flow is the only source of
correlations. The breakdown effect can be explored more quantitatively in the following anal-
ysis.
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A ratio for testing factorization defined as

rn ≡
Vn∆(ptrig

T , passoc
T )√

Vn∆(ptrig
T , ptrig

T )Vn∆(passoc
T , passoc

T )
(10)

has been proposed as a direct measurement of pT-dependent event plane angle fluctuations [27].
Here, the Vn∆ coefficients are calculated by pairing particles within the same pT interval (de-
nominator) or from different pT intervals (numerator). If Vn∆ factorizes, this ratio will be equal
to unity. With the presence of a pT-dependent event plane angle, it has been shown that the
ratio, rn, is equivalent to

rn =
〈vn(ptrig

T )vn(passoc
T ) cos

[
n
(
Ψn(ptrig

T )−Ψn(passoc
T )

)]
〉√

〈v2
n(ptrig

T )〉〈v2
n(passoc

T )〉
, (11)

where Ψn(ptrig
T ) and Ψn(passoc

T ) represent the event plane angles determined for trigger and
associated particles from two pT intervals [26, 27]. One can see from Eq. (11) that rn is in general
less than unity if event plane angle Ψn depends on pT.

In this paper, the proposed factorization ratio, rn, is studied as a function of ptrig
T and passoc

T for
different centrality classes in PbPb collisions at

√
sNN = 2.76 TeV. Figures 6–8 show the rn values

for n = 2–4, respectively, for four ptrig
T bins (of increasing pT from left to right panels) as a func-

tion of the difference between ptrig
T and passoc

T . The average values of ptrig
T and passoc

T in each bin
are used for calculating the difference. The measurement is performed in four different central-
ity classes, i.e., 40–50%, 0–10%, 0–5%, and ultra-central 0–0.2% centralities (from bottom to top
panels). By construction, the rn value for the highest analyzed passoc

T range, where trigger and
associated particles are selected from the same pT interval, is equal to one. Only results for ptrig

T
≥ passoc

T are presented. The error bars correspond to statistical uncertainties, while systematic
uncertainties are negligible for the rn ratios, and thus are not presented in the figures.

For the second Fourier harmonics (Fig. 6), the r2 ratio significantly deviates from one as the
collisions become more central. For any centrality, the effect gets larger with an increase of
the difference between ptrig

T and passoc
T values. To explicitly emphasize this observation, ptrig

T −
passoc

T , instead of passoc
T , is used as the horizontal axis of figures 6–8. The deviation reaches up

to 20% for the lowest passoc
T bins in the ultra-central 0–0.2% events for 2.5 < ptrig

T < 3.0. This
is expected as event-by-event initial-state geometry fluctuations play a more dominant role
as the collisions become more central. Calculations from viscous hydrodynamics in Ref. [27]
are compared to data for 0–10% and 40–50% centralities with MC Glauber initial condition
model [40, 41] and η/s = 0.08 (dashed lines), and MC-KLN initial condition model [42] and
η/s = 0.2 (solid lines). The qualitative trend of hydrodynamic calculations is the same as
what is observed in the data. The observed r2 values are found to be more consistent with the
MC-KLN model and an η/s value of 0.2. However, future theoretical studies, particularly with
comparison to the precision ultra-central collisions data presented in this paper, are still needed
to achieve better constraints on the initial-state models and the η/s value of the system.

For higher-order harmonics (n = 3, 4), shown in Fig. 7 and Fig. 8, the factorization is fulfilled
over a wider range of ptrig

T , passoc
T , and centrality ranges than for v2. The factorization only

breaks by about 5% at large values of ptrig
T − passoc

T , i.e., greater than 1 GeV/c. Due to large
statistical uncertainties, r5 is not included in this result. Again, the qualitative trend of the
data is described by hydrodynamics for 0–10% centrality, while no conclusion can be drawn
for 40–50% centrality based on the present statistical precision of the data.
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Figure 6: Factorization ratio, r2, as a function of ptrig
T - passoc

T in bins of ptrig
T for four centrality

ranges of PbPb collisions at
√

sNN = 2.76 TeV. The lines show the calculations from viscous hy-
drodynamics in Ref. [27] for 0–10% and 40–50% centralities with MC Glauber initial condition
model and η/s = 0.08 (dashed lines), and MC-KLN initial condition model and η/s = 0.2
(solid lines). Each row represents a different centrality range, while each column corresponds
to a different ptrig

T range. The error bars correspond to statistical uncertainties, while systematic
uncertainties are negligible for the rn ratios, and thus are not presented.

6 Conclusion
In summary, azimuthal dihadron correlations were studied for PbPb collisions at

√
sNN = 2.76 TeV

using the CMS detector at the LHC. Assuming factorization, these two-particle correlations
were used to extract the single-particle anisotropy harmonics, vn, as a function of pT from 0.3
to 8.0 GeV/c. The data set includes a sample of ultra-central (0–0.2% centrality) PbPb events col-
lected using a trigger based on total transverse energy in the hadron forward calorimeters and
the total multiplicity of pixel clusters in the silicon pixel tracker. In the context of hydrodynamic
models, anisotropies in such ultra-central heavy-ion collisions arise predominantly from initial-
state eccentricity fluctuations. The magnitude of the flow harmonics decreases from v3 to v6. As
a function of pT, these four harmonics all display a common maximum around pT = 3.5 GeV/c.
Although the v2 harmonic exceeds the others at low pT, it falls below v3 around pT = 1 GeV/c
and reaches its maximum around pT = 2.5 GeV/c.

The pT-averaged vn for 0.3 < pT < 3.0 GeV/c were also derived up to n = 7, and results for
0–0.2% collisions were compared to those for other slightly less central ranges. Between the
2.5–5.0% and 0–0.2% centrality ranges, all vn harmonics decrease. The decrease is largest for
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Figure 7: Factorization ratio, r3, as a function of ptrig
T - passoc

T in bins of ptrig
T for four centrality

ranges of PbPb collisions at
√

sNN = 2.76 TeV. The lines show the calculations from viscous hy-
drodynamics in Ref. [27] for 0–10% and 40–50% centralities with MC Glauber initial condition
model and η/s = 0.08 (dashed lines), and MC-KLN initial condition model and η/s = 0.2
(solid lines). Each row represents a different centrality range, while each column corresponds
to a different ptrig

T range. The error bars correspond to statistical uncertainties, while systematic
uncertainties are negligible for the rn ratios, and thus are not presented.

v2, reaching up to 45%. Only small variations of vn are observed for events that are even more
central than 0–0.2% (e.g., 0–0.02%). For the most central collisions, the pT-averaged v2 and v3
are found to be comparable within 2%, while higher-order vn decrease as n increases.

Detailed studies indicate that factorization of dihadron correlations into single-particle az-
imuthal anisotropies does not hold precisely. The observed breakdown of factorization in-
creases up to about 20% as the pT difference between the two particles becomes larger in
ultra-central PbPb events. This behavior is expected in hydrodynamic models, in which a pT-
dependent event plane angle is induced by initial-state fluctuations. The factorization data for
the 0–10% and 40–50% centrality ranges were compared to viscous hydrodynamic calculations
with different models of initial-state fluctuations and different η/s values. Future quantitative
theoretical comparisons to the high-precision data of ultra-central PbPb collisions presented by
the CMS collaboration in this paper can provide a new stringent test of hydrodynamic models,
particularly for constraining the initial-state density fluctuations and the η/s value.
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Figure 8: Factorization ratio, r4, as a function of ptrig
T - passoc

T in bins of ptrig
T for four centrality

ranges of PbPb collisions at
√

sNN = 2.76 TeV. The lines show the calculations from viscous hy-
drodynamics in Ref. [27] for 0–10% and 40–50% centralities with MC Glauber initial condition
model and η/s = 0.08 (dashed lines), and MC-KLN initial condition model and η/s = 0.2
(solid lines). Each row represents a different centrality range, while each column corresponds
to a different ptrig

T range. The error bars correspond to statistical uncertainties, while systematic
uncertainties are negligible for the rn ratios, and thus are not presented.
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M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
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Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram15, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte15,
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V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle,
B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann2, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth,
A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A.J. Bell, M. Bergholz17, A. Bethani,
K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza,
C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke,
A. Geiser, A. Grebenyuk, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, M. Hempel, D. Horton,
H. Jung, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, M. Krämer, D. Krücker, W. Lange,
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A. Benagliaa, M.E. Dinardoa,b, S. Fiorendia ,b ,2, S. Gennaia, A. Ghezzia ,b, P. Govonia ,b,
M.T. Lucchinia,b,2, S. Malvezzia, R.A. Manzonia ,b ,2, A. Martellia,b ,2, D. Menascea, L. Moronia,
M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, T. Tabarelli de Fatisa,b
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